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An attempt is made to describe by use of the onedimensional stochast ic model the flow system 
solid phase-liquid stirred by the mechanical rotary mixer. At the assumption th l t the solid 
phase is dimensionally homogeneo us a diffusion equation has been obtained which is solved 
under the boundary conditions, characterizing the method of withdrawal of the solid phase 
from the system. It is demonstrated that the model can express a lso the relations usually used 
for description of similar situations (ideal mixing, separation coefficients in sta tionary state etc. ) 
like individual cases. 

A number of operations exist in the chemical industry in which a contact of a sus­
pension formed by solid and liquid phases takes place. Typical examples of these 
operations are crystallisation, dissolving, leaching or suspension of catalysts in hetero­
geneous chemical reactions. 

The most usual dev ice for contact of solid and liquid phases is a vessel with a mechanical mixer. 
The present knowledge concerning the two-phase system formed by the solid phase a nd liquid, 
similarly as that on suspension and homog~nisation of solid particles in the ba tch operated vessels, 
is relatively extensive . Its survey is given e.g. in the monography by Nagata 1. 

On the contrary description of the flow stirred systems formed by the solid phase and liquid 
is from the point of view of hydrodynamics in literature relatively scarce 2 - 4. But with the in­
creasing significance of continuous processes the use of these systems is also increasing. There 
appear also problems with these systems concerning the dependences of concentration and solid 
particle size distribution on time at the outlet from the mechanically st irred vessel. 

Solution of these problems is usually based on the deterministic approach. But 
it is known that the statistical nature is one of their expressive features. We will 
take these processes in this way and will describe them accordingly. 

This paper is a contribution to the study on time dependence of concentration 
of solid particles at the outlet from the flow stirred system from the point of view 
of application of random processes. Such studies of the two-phase flow systems can 
serve, together with the kinetic parameters, to the design of units such as chemical 
reactors, crystallisers etc. 

Part LlV in the series Studies on Mixing; Part LIII : This Journal 44, 3077 (1979). 
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THEORETICAL 

The object of this study is the Newtonian liquid charge, containing the system of solid 
particles. The charge is situated in the vessel of cy lindri ca l shape equipped with the 
rotary mixer situated in the axis of symmetry of the vessel. The particles are small 
in comparison with the dimensions of the vessel in which the charge is situated. 
The mixer rotates so intensively that the hydrodynamic regime is turbulent. It is thus 
possible to consider that both the liquid motion and motion of carried particles is 
random. The liquid together with solid particles is withdrawn from a certain loca­
tion of the change at stationary hydrodynamic regime. The volume of the suspension 
is kept constant by addition of liquid into the rotor region of the mixer. Motion 
of particles in the vessel space is in general ani sotropic due especially to gravita­
tional force acting on them and resulting in nonuniform distribution of concentra­
tion. 

It is obvious that the described situation is rather complicated and that it is neces­
sary to introduce simplifying assumptions for its mathematic description. The proce­
dure begins with the investigation of motion of one particle in the liquid at turbulent 
regime and applying this motion to the whole system of particles. The momentum 
balance equation for motion of a small spherical particle in the liquid has been 
derived by Tchen 5 at some simplifying assumptions. Such equation is complicated, 
its solution complex and frequently impossible. 

As has been already stated, it is possible to consider the motion of the liquid 
and particles as random. The motion of a solid particle in the mechanically stirred 
charge is thus described from the aspect of random processes so that the forces 
in the Tchen 5 relation, characterizing interactions between particles and liquid 
(except of viscous friction forces) have been substi tuted by only random force. 
Relations which have been so obtained describing the motion of a single particle 
were then generalized by the law of large numbers to the suspension of solid particles 
in liquid. Another simplification is the assumption that concentration of particles 
is approximately equal in the horizontal cross section of the stirred charge i.e. that 
it is changing significantly only in the vertical direction i.e. in the direction of gravita­

tional force. 

DESCRIPTION OF MOTION OF SOLID PARTICLE IN TURBULENT LIQUID 

The cylindrical coordinate system is used. With regard to the last assumption we will 
consider only the change in concentration of suspension in the vertical direction i.e. 

the onedimensional problem (Fig. 1). 

For derivation of the stochastic differential equation expressing the motion of parti­
cles in turbulent liquid from the point of view of Markov's processes

6
, we consider 

the position z(t) of particle as the random function of time t. For the velocity of mo-
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tion of the particle then holds 

Vet) = dZ(t)jdt . (1) 

For simplification of the description, the motion of the liquid charge which is sur­
rounding the particle is not considered and its interaction with the particle is sub­
stituted by the action of external forces. Thus we assume that the following forces 
act on the particle: 

1) Force proportional to the velocity of particle motion with respect to the liquid 
and counter to the direction of motion of the particle. This force is from physical 
point of view the force of viscous resistance. 2) Force, independent both of velocity 
and position of particle and oriented counter to the positive direction of the axis z. 
This force represents the gravitational field effect on the particle. 3) Random force 
whose impuls is proportional to the Wiener process6 Wet) and which is characterizing 
the effect of turbulence on the particle. 

On basis of the made assumptions 1) to 3) it is possible to write the differential 
momentum balance in the form 

Jl dV(t) = -ct Vet) dt - /3 dt + y dW(t) , (2) 

where f1 is the mass of the considered particle and ct, /3, and yare constants at steady 
operating conditions in the equipment. We substitute into the first right hand side 
term of Eq. (1) and we neglect the random velocity changes with respect to' random 
changes of the particle position. It has been demonstrated7 that the last assumption 
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FIG.l 

Mixer with Random Particle Motion 
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holds the more accurately the longer time passes from the beginning of operation , 

i.e. from the moment the particle has been in a certain position (e.g. on the bottom 
of the vessel.) 

By the given simplification of Eq . (2) the stochast ic differential equation is obtained 

dZ(t) + wdt - cdW(t) = 0, (3) 

where e = )'/a. and w = f31a.. 
It is possible to prove, that the given stochastic differential equation 3 describes the 

diffusion Markov's process , i.e. such Markov's process where the considered random 

functions are continuous for every value of the variable t . For this process holds 

in general the Kolmogorov's forward equation 6 which for the case of Eq. (3) can be 

written in the form 

(4) 

where / = /(z; tg; r) is the transitive probability density. Jt is obvious from Eqs (3) 

and (4) that the constant w is the terminal velocity of particle in the quiescent liquid 

and the quantity e2 /2 represents the turbulent diffusivity . 

Equation (4) is the partial differential equation of parabolic type, which can be 

solved analytically under the given initial and boundary conditions. By solving 

this differential equation, the value of the probability density of the random !'unction 

Z(/) is obtained. It has been demonstrated 8
, that at certain assumptions and with 

regard to the law of large numbers7 this probability density is directly proportional 

to the concentration of solid particles. The symbol/in Eq. (4) can be thus formally 

considered to be this quantity.* 

DETERMINATION OF INITIAL AND BOU NDARY CONDITIONS 

We select a onedimensional coordinate system with the origin in the point of with­

drawal of suspension (Fig. 1). The boundaries of the system are then determined 

by the coordinates h1 and - h2 • Let us moreover assume that the height of the quies­

cent liquid in the vessel is equal to its diamter D. There obviously holds the relation 

(5) 

The term concentration of solid phase in a point is considered in the usual sense: "by point" 
is meant a prism with the centre in the given point so large as to take the mass of solid phase 
in the volume of the prism as the continuous function of location and time, with a sufficient 

accuracy. 
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The origin of the coordinate system is, in the frame of our onedimensional model, 
a point from where the solid phase is sucked off. This fact can be in general the 
cause of singularity of the function 1(.) in this point. Thus in our next considera­
tions the vessel is divided into two regions: region situated above the plane passing 
through the origin and the region situated below it and each will be described separa­
tely. 

At first the corresponding dimensionless quantities are introduced. The dimension­
less time e 

e = tm/D (5a) 

dimensionless length coordinate 

y = z/D (5b) 

dimensionless concentration (as the mass of the solid phase in the point y and in time 
e, related to the total initial mass of solid phase in the charge) 

C(y, e) = DI(yD; eD/m) (5c) 

and the dimensionless coordinates of boundaries of the system 

(5 d) 

By this way the following relations are obtained from Eq. (4) 

(6a) 

and 

(6b) 

where the constant K is characterized by the ratio of turbulent diffusivity and terminal 
particle velocity 

(7) 

The system from the point of view of mass transfer is on both ends closed. As 
concerns the random processes the reflexive boundaries9 are concerned, for which 
there holds 

C1 + K aa~l = 0; [y = s, e > OJ (8a) 
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and 

(Bb) 

Moreover it is necessary to characterize the bonding conditions in the singular point. 

First of all there obviously holds equality of concentrations 

C 1 = C2 [y = 0; 0 > 0] . (9a) 

Beside this there holds the material balance of the solid phase with respect to the 
volume of infinitesimal thickness dz, denoted by hatching al so in Fig. 1 which can be 

written 

where Sn is the cross-sectional area of the vessel , Sl cross-sectional area of the pipe 
and w velocity of liquid in this pipe. After arrangement of this relation we obtain 

the last bonding condition 

~C 
K 1 

[y = 0; 8 > 0], (9b) 

where 

(10) 

Initial condition gives distribution of the solid phase in the vessel in time 8 = O. 
Practically two possibilities come into consideration: a) At the beginning of the 
experiment is the solid phase concentrated at the bottom of the vessel, which can be 

expressed by the relation 

Co = C,j = bey - 1 + s) [8 = 0] . (1 I) 

b) Solid phase is at first distributed by mixing so that the stationary state is reached 
and then from the moment 8 = 0 the withdrawal of product is started. The cor­
responding explicite relation can be obviously obtained as the stationary solution 

of any of Eqs (6), as without withdrawal of suspension the function Co = Cp = C 1 

= C2 in the point y = 0 has no singularity: 

K d
2
Cp + dCp = 0 [s - 1 ~ Y ~ s; 8 ~ 0] . 

dy2 dy 
(12) 
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One boundary condition is any of relations (8), the second one is obtained on basis 
of the basical consideration tha t the total mass is in this case constant 

(13) 

Solution of Eq. (11) is then given by the relation 

Ciy) = exp (- y/ K)/{K exp (- s/K). [exp (I /K) - lJ } [0 = OJ . (14) 

So is the problem fully determined, at the given assumptions is the result of the model 

a onedimensional diffusion equation with the "convecti ve" term (drift term) but 
with unusual boundary conditions. 

SOLUTION OF DIFFUSION EQUATIONS 

The system of diffusion equations (relations (6)) can be solved analytically by the 
Fourier method 10 . 

The particular solution is obtained in the form 

where 

}.J = 1/(4K) - K(paJ2. [j = 1, 2J . (16) 

The quantities Aj , Bj and aj are real numbers, whose values must be determined from 

initial and boundary conditions. The quantity p can equal only to one or to i = J -1 
so that the right hand side of Eq. (16) would always be non-negative. From the 
binding condition (9a) is obtained directly 

From boundary conditions (8) it is possible to form relations 

where Y1 = sand Y2 = s - 1. 

cosh (paYj) + 2Kpa sinh (paYj) 
p[2Kpa cosh (paYj) + sinh (payJJ' 

From the binding condition (9b) the relation is obtained 

(17) 

(18) 
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The last equation with regard to relation (17) is transcendent equation with respect 
to a. 

With regard to familiar relations sin x = - i sinh (ix) and cos x = cosh (ix), 
where i = .J -1 it is possible to demonstrate easily that in the case p = .J -1 the 
function becomes also only equal to real values and that it is periodical with the 
2n. Beside this is the function g(a) symmetrical with respect to the origin. By solving 
Eq. (18) an infinite number of roots is obtained, two of which differ mutually only 
by the sign. In Fig. 2 is plotted qualitatively the function 1Ig(a) for the given value 
of parameter K for both values of p. In point G the function becomes equal to g(a) 
as can be easily proved 

lim g(a) = I I A = [(2K + sy - (2K + s)]jK . (19) 
a~O 

From this plot is obvious that for smaller values M i.e . in the case 11M> G is the 
first root the solution of Eq. (i8) for p = 1, i.e. in the relation appear hyperbolic 
functions. In the case of large values of M, also p is for the first root equal to the 
imaginary unit. In the special case is M equal to 11G, the first root is twice as large 
and becomes equal to zero. All other roots are solutions of Eq. (18) in which there 

appear trigonometric functions , as p = .J - 1. 
The general solution can be thus written in the form of an infinite sum, while 

with regard to the statement on symmetry of the function g(a) only non-zero values 

of roots a i are considered 

ely, 0) = I Ai exp {- [1/(4K) - K(paJ2J 0 - yJ(2K)} . Yily) , (20) 
i=l 

FIG. 2 

Plot of Function Ijg(a) Defined by Eq. (18) - -p = .J-l, ---p = 1 
In point G there holds Ijg(a) = Kj[(2K + s)2 - (2K + s)]. 
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where 

As results from Eqs (6) is the index j = 1 related to the region above the plane 
in which the withdrawal of suspension takes place the index j = 2 to region under 
this plane. 

The values of constants Ai must be determined from initial condition which is 
given by the Eq. (11) or (14). The method of orthogonal functions is used in this case 
(e.g.!O). But in our case is orthogonal, unlike usual procedures, always a pair of func­
tions describing the situation simultaneously above and below the plane of with­
drawalll 

(21) 

After this given integration the values of constants Ai are obtained. Let us write 

(22) 

where Fi is numerator and EI denominator of the fraction (21). It is obvious.1h_at the 
value Ei is independent of the initial condition. It is possible to demonstrate!! 
that there holds 

(23) 

where 

l/!i(Yj) = sinh (2aiPYj) . (1 + cp;jp2) + 2(cp)p) cosh (2a iPYj) + 

+ 2aiPy/1 - cp;jp2); [j = 1,2] , (24) 

and where CPjjp and Yj are defined by Eq. (17). 
The value of numerator Fi depends on initial condition. For conditions defined in Eq. 
(11) or (14) the relation is obtained 

{ 

2Kpa;f{2Kpai cosh (pa iY2) + sinh (pa iY2)} (11) 

Fi = 16aipMj{[1 + (2Ka iP)2] [exp (1jK] _ 1] exp (-sjK)) (14). (25) 

From Eqs (23)-(25) it is substituted into Eq. (22) and from there into Eq. (20). 
In this way the problem is completely solved. 

Collection Czechoslov. Chern. Commun. [Vol. 45] [1980] 



Stochastic Model of the Flow, Mecha nica lly Stirred Solid- Liquid Sys tem 2079 

DISCUSSION 

The proposal procedure demonstrates application of the stochastic differential equation 
to description of the random process , i.e. of a procedure which is more and more 
frequently used for description of chemical engineering processes (see e.g. 12

). This 
procedure leads in our case to the classical parabolic oncdimcnsional differential 
diffusion equation, used in chemical engineering for description of heat and mass 
transfer in a single phase system. 

On the proposed model according to o ur opinion are especially interesting the 
unusual boundary conditions expressing the internal withdrawal of material from the 
system. In general it would thus be possible to use this procedure for the onedimen­
sional description of flow reactors with internal product withdrawal. ]n case the 
internal product withdrawal is altered to the end withdrawal , the boundary conditions 
are reduced to the outlet Danckwerts conditionS (at the assumption that the rate 
of withdrawal equals to the terminal particle velocity). 

PHYSICAL SENSE OF THE MODEL 

The model describes distribution of particle concentration along the vessel height 
with time. The model is onedimensional and is thus not describing the radial distribu­
tion of concentration which is e.g. due to liquid convection (circulation). ]n other 

words the constant concentration of solid phase in the given height is assumed. 
In our concrete case the coordinate system is selected so that its origin is situated 

in the point of product withdrawal. This selection enables simplification of resulting 
relations for description of time changes of concentration at the outlet from the 

vessel. 
The quantity /)2/2 from Eq. (4) is usually denoted, as has been already given above, 

as turbulent diffusivity. It is in this case usual to assume that in the charge stirred 
by the mechanical rotary mixer this quantity is proportional to the product of stirring 
rate and second power of its diameter. The coefficient 6

2 is a part of the dimensionless 
parameter K (Eq. (7)), which is characterizing the ratio of velocity by which are the 
particles suspended to the sedimentation rate or ratio of forces causing turbulence 

ofliquid to the gravitational force acting on the particle. 
The parameter M, defined by Eq. (10) is characterizing the ratio of rate of sus­

pension withdrawal to the terminal velocity of particles. 
The parameter s is the dimensionless distance of the point of withdrawal from the 

liquid surface in the vessel. 

BEHAVIOUR OF THE MODEL AT LIMITING VALUES OF PARAMETERS 

How correct is the model - in the range of given assumptions - it is usual to con­
sider according to relations obtained at limiting values of parameters, i.e. in situations 
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usually clear from the physical point of view. Let us discuss several such cases here. 

a) K -+ 00. For particles of final dimensions the turbulence in the charge must 
obviously increase infinitely. It is thus possible to expect that the device will behave 
as an ideal mixer. 

Let us prove this statement. From discussion ofEq. (19) or from Fig. 2 it is obvious 
that in this case in relation (18) there appear only trigonometric functions. Thus 
we put p = J -1 and from Eqs (17) and (18) we obtain after arrangement the equa­
tion 

M = (4KZa~ + 1) Ka i tg a){[l + tg (aiYl) .tg (a iYz )] . 

. {4K2a~ + 2Kai[tg (aiYt) + tg (aiYZ)] + tg (a;YI) tg (aiYZ)}} = g(a i) . (26) 

Also we investigate the limit of the right hand side of Eq. (26) for K -+ 00 and for the 
limited positive M . The limit is satisfied for values of roots 

ai = (i - 1) TC • (27) 

The first root is obviously equal to zero. Its convergence at the increase of K beyond 
.all limits is studied later. Obviously there holds 

M = lim g(a I) = lim Ka i tg al = lim Kai 
K~ oo K- oo K- oo 

and thus 

ai = limM/K. (28) 
K- oo 

By substituting from these equations into corresponding relations the values of rela­
tions are obtained 

Al = 1; Ai = 0 [i = 2,3, ... ]; Ylj = 1 , 

so that Eq. (20) takes the form 

lim elY, e) = lim exp{ -[1 /(4K) + K(M/K)] e - Y/(2K)} = exp (-M . e). (29 
K~oo K-oo 

Thus the expression converges to the exponential function with respect to the di­
mensionless time e and is not a function of spacial coordinate. Thus the ideal mixer 
is actually concerned. 
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b) K -+ O. The turbulence in the charge and thus the force which lifts the particles 
is equal to zero. Thus the particles will always lay on the bottom, i. e. for a ll values 
of 0 the function Cly,O) is equal to the initial condition Co(y) . This fact can be 
proved by direct solution of differential Eqs (6). Also the convergence of the station­
ary initial condition proves this statement 

lim Cp(Y) = Cs(Y) . 
K-O 

c) M --+ O. This case demonstrates the fact that the solid phase is not withdrawn 
from the charge. It is obviously possible to reach the stationary distribution of the 
solid phase in the vessel in this case. As results from condition (9b), the function CJ 
always has continuous derivation and thus C 1 = C2 • It is thus possible to solve 
only one of Eqs (6) at the boundary conditions (8) whose stationary solution is rela­
tion (14). By similar procedure as in case sub a) , it is possible to prove hereby that 

there holds 

lim Al = [Kexp(-s/K)exp(l /K) - 1]-1; lim Ai = 0; [i = 2, 3, ... ]. (30) 
M- O M-O 

The corresponding roots become equal to values 

lim at = 1/(2K); lim ai = (i - 1) 1t; [i = 2, 3, ... ] . (31) 
M-O M-O 

The proposed function thus corresponds in limiting cases to the physical model. 

MATERIAL BALANCE OF THE SYSTEM 

From the criticism of the model, given at the beginning of this chapter it is obvious 
that the proposed relations will not be able to describe the actual distribution of par­
ticles in the space of the stirred charge with the sufficient accuracy. But it is possible 
to assume that the integral characteristics i.e. the total withdrawal of the solid 
phase as the function of time will satisfactorily agree with the actual situaton. The 
model thus enables description of the wash-out of solid phase from the system. 

Let us put together the material balance of the considered system in dimensionless 
form expressing the fact that the decrease in the solid phase content is just equal 

to the withdrawn amount 

d fS fO d _ _ Ct(Y, 0) dy + C2(Y, 0) dy = - de m(O) = MC(O, 0). 
dO ° 5-1 

(32) 
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Is is obvious from Eq. (20) that the solid phase concentration in the point of its 
withdrawal (i .e. in the point y = 0) is equal to 

00 00 

qo, e) = L Ai exp { - [l j(4K) - K(paiY] e} = I Ai exp (- ), ~e) . (33) 
j= 1 i = 1 

The dimensionless mass m(e) defined as the actual mass in the moment e, related 
to the initial mass of the solid phase in the charge is obtained by integration of Eq.(32) 
in the form 

<Xl 

m(e) = M L Ai exp (- A~e)jA~ . (34) 
i= 1 

From this last relation results that the infinite sum is always limited, m(O) = 
00 

= M L Ai/Af = 1. 
i= 1 

The relation (33) enables description of wash-out of the solid phase. For conditions 
at which the system is approaching the ideal state this expression can be simplified. 
We introduce the term separation factor (! as the ratio of solid phase concentrations 
in the point of withdrawal and in the time e to the mean concentration of the solid 
phase in the charge 

(35) 

It is obvious that the so defined factor is a function of time. For sufficiently large K 
or for small values of M - as we have demonstrated in the last paragraph - the 
constants Ai with the exception of the first one are approaching zero, so that after 
substitution from Eqs (33) and (34) into (35) the relation is obtained (! ~ Ai!M = 

= konst. 

and from here the relation results 

qo, e) = (Ai!M) exp (-Aie). (36) 

The relation (36) takes the form of Eq. (29) with further rise of K above all limits. 
The relation (36) is also exponential with respect to the dimensionless time e, but 
the value of the separation factor depends on the flow rate of liquid through the 
system and on the turbulence intensity and terminal particle velocity. 

We suggest to call such regime quazi-ideal. Bourne and Sharma3 as well as Baldi 
and Conti4 have obviously been experimenting under conditions close to this regime. 
In both cases the experimental wash-out curves demonstrate the exponential depen-
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dence on time but they do not correspond to the ideal mixer with the mean residence 
time of liquid in the equipment equal to the ratio of its flow rate to the volume of the 
charge. 

CONCLUSIONS 

From the analysis of the proposed model result s that it can describe some effects 
in the hydrodynamics of stirred systems solid phase- liquid , first of all the time changes 
of mass of the solid phase in the charge. It is necessary to mention that in the given 
form the model holds accurately only for monodisperse solid particles. Its extension 
to polydisperse systems of solid particles is one of its prospective improvements. 

The authors 1V0uld like to thallk Dr. A. Kimla, Mathematical Departmellt Illstitute of 

Chemical Technology, for valuable suggestions alld commell/s to this 1V0rk. 

LIST OF SYMBOLS 

A constant in Eq. (15) 
root of transcendent Eq. (18) 

B constant in Eq . (15) 
C = c Sn(h 1 - h2 )//1(0) dimensionless concentration 
c concentration of solid phase, kg m -.1 
D diameter of vessel, m 
E expression defined by relation (23) 
F expression defined by relation (25) 

f transitive probability density, m - 1 

g function defined by relation (18) 

hi 

"2 
K 
M 

m = /1(t)//1(O) 
p 

.1'= "dD 
Sn 
t 

V 
W 

y 

y = z/D 
Z 

fl 

upper end of the stirrer, m 
lower end of the stirrer, m 
constant defined by Eq. (7) 
constant defined by Eq . (10) 

dimensionless mass of solid phase 
real or imaginary unit 
dimensionless boundary of the mixer 
cross-3ectional area, m2 

time, s 
velocity of particle (random function of time), m s - I 

Wiener process', s l/2 
velocity of liquid in the outlet tube, m s - I 

function defined by Eq. (20) 
dimensionless length coordinate 
position of particle (random function of time), m 

length coordinate, m 
constant characterizing friction force, kg S-1 

constant characterizing the gravitational force, kg m s - 2 

constant characterizing random force, kg m s - 3/2 

Diracs function 
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e 
0 = twl D 
A 

constant characterizing turbulent diifusivity, m s -1 / 2 

dimensionless time 
constant defined by Eq. (/6) 
mass of particle, kg 

rp 

'II 
w 

Subscripts 

initial mass of solid phase in the charge, kg 
instantaneous mass of the solid phase in the charge, kg 
initial position of the particle, m 
separation factor 
initial moment, s 
function defined by Eq. (17) 
function defined by Eq. (24) 
terminal velocity of particle, m s - 1 

related to the volume of the vessel above the plane of sample withdrawal 
related to the volume of the vessel below the plane of sample widthdrawal 
summation index (natural number) 

n related to the vessel 
o rela ted to initial conditions 
p related to stationary state 
(~ related to bottom of the vessel 
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